BMIR/Khatri lab Cluster
Details
9 nodes total (shared with Shah lab)
4 of them are dedicated to Khatri lab
- Intel® Xeon® CPU E5-2680 v3 @ 2.50GHz
- 24 cores, hyperthreaded
- 384 GB of RAM (per node)
- 600 GB of disk ( $LOCAL_SCRATCH)
How to use it
All jobs are sent via khatrilab-dev1.stanford.edu, no need to log into any particular machine. Cluster runs Simple Linux Utility for Resource Management (SLURM)
- Scheduler
- Compatible with Sherlock cluster
- Full control over CPU Memory usage
- Job Array support
Usage Details: Modules
We use environmental module system
> module avail > module load R/3.2.0 > module list > module unload R/3.2.0
Usage Details: Commands
srun
Example:
srun --partition=khatrilab hostname srun --partition=khatrilab -N 3 hostname srun --partition=khatrilab -N 3 -n 10 hostname
sbatch
Example - full sbatch script to load and run R
#!/bin/bash #SBATCH --mail-type=ALL #SBATCH --mail-user=alexskr@stanford.edu #SBATCH --time=0-01:05 # Runtime in D-HH:MM #SBATCH --job-name=sample_R_job #SBATCH --nodes=1 # Ensure that all cores are reserved on one machine #SBATCH -n 20 #number of cores to reserve, default is 1 #SBATCH --mem=4086 # in MegaBytes. default is 8 GB #SBATCH --exclusive # exclusive access to nodes for the job. #SBATCH --partition=khatrilab # Partition allocated for the lab #SBATCH --error=log/job.%J.err #SBATCH --output=result/job.%J.out # Fist we need to enable R module load R/3.2.0 # Run script Rscript rscript_parallel.R
Other commands
scancel squeu sacct sinfo
Interactive Sessions
[alexskr@khatrilab-dev1 ~]$ salloc -N 1 -n 20 -- mem=8066 --partition=khatrilab salloc: Granted job allocation 684 [alexskr@khatrilab-dev1 ~]$ srun --pty bash [alexskr@bmir-ct-1-1 ~]$